Начертательная геометрия Сопротивление материалов Потенциальная энергия деформации Моменты инерции сечения Кручение тонкостенного бруса Определение опорных реакций

Курс лекций Сопротивление материалов

Кручение тонкостенного бруса

 В машиностроении, авиастроении и вообще в технике широко применяются тонкостенные стержни с замкнутыми (рис.4.7,а) и открытыми профилями (рис.4.7,б) поперечных сечений. Поэтому расчеты на кручение таких тонкостенных стержней имеет большое практическое значение.

Рис.4.7

 Характерной геометрической особенностью тонкостенных стержней является то, что их толщина существенно (на порядок и более) меньше других геометрических размеров (длиной срединной линии контура поперечного сечения и длины стержня).

 Характер распределения напряжений по толщине тонкостенного стержня открытого профиля близок к равномерному (рис.4.7,б), а замкнутого профиля меняется по линейному закону, как это показано на рис.4.7,а. Откуда следует, что напряжения в поперечных сечениях открытого профиля практически не изменятся, если профиль сечения распрямить. Иначе говоря, напряжения в криволинейном открытом профиле будут примерно такими же, как и в прямом.

 Обращаясь к формулам (4.14), (4.16) и при предельном переходе , получим:

;, (4.17)

где d-толщина профиля; s-длина контура профиля; l-длина стержня.

 В случае, если тонкостенный незамкнутый профиль является составным (рис.4.8) и не может быть развернут в вытянутый прямоугольник, воспользовавшись почленной аналогией, легко определить выражения напряжений на i-ом произвольном участке:

, (4.18)

где MK(i)-доля крутящего момента, соответствующего i-му участку:

,

где j-угловое перемещение, единое для всех участков:

. (4.19)

 Изложенный подход к определению напряжений является приближенным, так как он не позволяет определить напряжения в зонах сопряжения элементов поперечного сечения профиля, которые являются зонами концентрации напряжений.

 Рис.4.8 Рис.4.9


Лекции, примеры выполнения задания Сопротивление материалов