Математический анализ Аналитическая геометрия

Математика решение матриц примеры

Решение систем линейных уравнений

Например, решим матричным способом систему

матрица системы

Не является ли матрица А вырожденной? Найдем ее определитель:

| А| =1·[-1·4 – 1·2] – 1·[2·4 – 2·4] + 2·[2·1 – 4·(-1)] = -6 + 12 = 6

Определитель не равен нулю, то есть матрица не вырожденная. Значит, существует обратная матрица

А11 = (-1)1+1·М11 = (+1)·[-1·4 – 1·2] = -6

А12 = (-1)1+2·М12 = (-1)·[2·4 – 2·4] = 0

А13 = (-1)1+3·М13 = (+1)·[2·1 – 4·(-1)] = 6

А21 = (-1)2+1·М21 = (-1)·[1·4 – 1·2] = -2

А22 = (-1)2+2·М22 = [1·4 – 2·4] = -4

А23 = (-1)2+3·М23 = (-1)·[1·1 – 4·1] = 3

А31 = (-1)3+1М31 = [1·2 – (-1)·2] = 4

А32 = (-1)3+2·М32 = [(-1)·1·2 – 2·2] = 2

А33 = (-1)3+3·М33 = [1·(-1) – 2·1] = -3

или коротко или АХ=С

система записана в матричном виде (как произведение матриц)

Решим эту простенькую систему школьными методами.

Умножим первое уравнение на а22, а второе на (-а12) и сложим

11а22 – а21а121 = с1а22 – с2а12

аналогично

11а22 – а21а122 = с2а11 – с1а21

1) но а11а22 – а21а12 = - это определитель матрицы А(det А) или его еще называют определитель системы и он составлен из коэффициентов при неизвестных. Обозначим его D

2) определитель, который получится из det А, если в нем столбец коэффициентов при х1 (первый столбец) заменить на столбец правых частей. Обозначим его D Х1

3)

Видим, что


Примеры решения задач по математике Линейная алгебра