Лорановские разложения Вычислить интегралы от функции комплексного переменного Комплексные числа Элементарные функции комплексного переменного Степенная функция Примеры вычисления производных Числовые ряды с комплексными членами

Математика примеры Приложения кратных, криволинейных и поверхностных интегралов

Пример.  Вычислить интеграл от разрывной функции  или установить его расходимость.

Решение. Данная подынтегральная функция имеет разрыв в точке х=0, поэтому разделим исходный интеграл на два несобственных интеграла, так как они будут представлять собой интегралы от разрывной функции в точке границы отрезка интегрирования.

.  (1)

Так как подынтегральная функция имеет разрыв на правом конце отрезка интегрирования, то переходим к следующей записи:

Таким образом, на отрезке  интеграл расходится, а следовательно расходится и исходный интеграл, так как равенство (1) справедливо только для сходящихся интегралов в правой части.


Интегрирование функций комплексной переменной