Начертательная геометрия Лекции, примеры выполнения задания

Комплексный чертеж кривых линий

Линия задается кинематически - как траектория непрерывно перемещающейся точки в пространстве.

Линии применяются не только для выполнения изображений различных геометрических фигур, но и позволяют решать многие научные и инженерные задачи. Например, с помощью линии можно создавать наглядные модели многих процессов, и исследовать функциональную зависимость между различными параметрами. Кривую линию можно рассматривать как линию пересечения двух поверхностей.

В начертательной геометрии кривые линии изучаются по их проекциям. Построение проекций зависит от того, плоская кривая или пространственная.

Если все точки кривой расположены в одной плоскости, то такую кривую называют плоской кривой линией (например эллипс, окружность).

Если все точки кривой невозможно совместить с одной плоскостью, то такую кривую называют пространственной (винтовая линия).

Если существует математическое уравнение, описывающее движение точки, то кривую называют закономерной. Аналитически закономерные линии подразделяются на алгебраические и трансцендентные. Примером алгебраических кривых служат кривые второго порядка (эллипс, парабола, гипербола). К трансцендентным линиям относят графики тригонометрических функций (синусоида, косинусоида), эвольвента, циклоида.

Если кривую линию не удается выразить в аналитической форме, то ее задают графически. Графически - своим изображением может быть задана и закономерная линия, образование которой подчинено определенным геометрическим условиям.

Как графически определить порядок кривой?

Порядок алгебраической кривой равен степени ее уравнения или определяется графически, т.е. числом точек ее возможного пересечения с произвольной прямой.

Например, эллипс - кривая второго порядка (рис. 1-45).

эллипс - кривая второго порядка

Рис. 1-45

Как спроецировать кривую на плоскость проекций? Мысленно проецируют все точки кривой на плоскость проекций, но практически же это сделать невозможно, поэтому для проецирования выбирают конечное число точек (рис. 1-46). Чем больше точек, тем точнее проекция кривой. При выполнении заданий по нашему курсу следует брать не менее 8...12 точек.

Как спроецировать кривую на плоскость проекций?

Рис. 1-46

Ф - проецирующая поверхность (в данном случае кривая поверхность)

Проецирующая поверхность Ф пересекается с плоскостью проекций по кривой m1 - это горизонтальная проекция кривой. Фронтальная проекция получается аналогично.

Метод хорд

Линия считается заданной на чертеже, если известен закон нахождения каждой ее точки. Для задания линии удобно использовать ее определитель. Определитель линии - это минимальная информация, необходимая и достаточная для однозначного построения на эпюре любой точки кривой.

Построение на эпюре любой точки кривой позволит однозначно решить вопрос о характере кривой линии (плоская или пространственная). Если на заданной кривой взять произвольные четыре точки и через них провести хорды (секущие), то возможны два варианта:

1. Если хорды пересекаются (графически это видно на рис. 1-47, когда К1, К2 - точки пересечения проекций хорд лежат на одной линии связи), то через пересекающиеся прямые можно провести плоскость, а это значит, что они образуют плоскость, в которой лежит заданная кривая. Значит, кривая линия - плоская.

Плоская кривая линия

Плоская кривая линия

Рис. 1-47

2. Хорды не пересекаются, а скрещиваются (графически это видно на рис. 1-48, когда К1, К2 - точки пересечения проекций хорд не лежат на одной линии связи), значит кривая линия - пространственная.

Пространственная кривая линия

Пространственная кривая линия

Рис. 1-48

Касательная, нормаль к кривой

Как построить касательную к кривой?

Для построения используем прямые, называемые секущими.

Прямая, пересекающая кривую линию в одной, двух и более точках, называется секущей (АВ).

Чтобы через точку А провести касательную t к кривой m, в окрестности точки А (недалеко) выбирают точку В и проводят секущую АВ. Приближая точку В к точке А в пределе получают касательную t в данной точке.

В ® А Þ АВ ® t

Касательная, нормаль к кривой

Рис. 1-49

Касательную (t в точке А) можно рассматривать как предельное положение секущей, которое занимает последняя при сближении точек пересечения А и В секущей АВ до слияния их в одну точку.

n - нормаль кривой линии в данной точке, n ^ t. Сколько их можно провести? К пространственной кривой можно провести n ® ¥, т.е. к касательной можно построить плоскость, нормальную к ней. Если кривая - плоская, то к касательной можно провести только одну нормаль.

Рассмотренная точка А, у которой только одна касательная и одна нормаль , называется обыкновенной точкой кривой. Если вся кривая состоит из обыкновенных точек, то она называется регулярной (гладкой, плавной).

У регулярной плоской кривой (рис. 1-50) в каждой точке А, В, С, D, Е к касательной можно провести только одну нормаль, поэтому все точки являются обыкновенными(монотонными). Характеристикой плавной кривой может быть и угол наклона касательных относительно оси Х, который в данном случае меняется плавно.

У регулярной плоской кривой

Рис. 1-50

Особые точки кривых линий

Точку кривой называют особой (нерегулярной), если положение или направление касательной в этой точке определено неоднозначно. К особым (нерегулярным) относятся:

Точки узловые (самопересечения)

Точки узловые (самопересечения)

Точки возврата первого рода

Точки возврата первого рода

Точки возврата второго рода (клюв)

Точки возврата второго рода (клюв)

Точки самосоприкосновения

Точки самосоприкосновения

Точки угловые (точки излома)

Точки угловые (точки излома)

Лекции, примеры выполнения задания курсовых проектов по начерталке