Начертательная геометрия Лекции, примеры выполнения задания

Метрические задачи. Преобразование комплексного чертежа

Модуль №4 предполагает знакомство с задачами, связанными с различными измерениями: натуральных величин отрезков, углов, плоских фигур; расстояний между фигурами и т.д. Вы узнаете, как проще решать метрические и позиционные задачи, используя способы преобразования комплексного чертежа. Кроме того, используя знания, полученные в модулях 1-3, Вы научитесь решать сложные инженерные конструктивные задачи.

Метрические задачи

"Ведь между двух соседних точек

Прямая - самый краткий путь,

Иначе слишком много кочек

Необходимо обогнуть."

Л.Н.Мартынов

Как Вы думаете?

1. Что является кратчайшим расстоянием от точки до прямой, до плоскости?

2. Что является кратчайшим расстоянием между скрещивающимися прямыми, между двумя параллельными плоскостями?

3. На чертеже рис. 4-1 показан угол АВС. Присутствует ли на какой-нибудь плоскости проекций натуральная величина угла?

Метрические задачи. Преобразование комплексного чертежа

Рис. 4-1

Метрическими называются такие задачи, в условии или решении которых присутствуют геометрические фигуры или понятия, связанные с численной характеристикой.

Наиболее часто встречаются метрические задачи: на взаимную перпендикулярность геометрических фигур, на определение натуральной величины заданных отрезка или угла, на построение натурального вида плоской фигуры и т. п.

Из всего многообразия метрических задач выделяются две основные:

1. Первая основная метрическая задача - на перпендикулярность прямой и плоскости.

2. Вторая основная метрическая задача - на определение натуральной длины отрезка. Эта задача решается методом прямоугольного треугольника, который рассматривался в первом модуле.

Рассмотрим подробнее первую основную метрическую задачу.

Взаимная перпендикулярность прямой и плоскости.

Из элементарной геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Задача: Через точку К Î S построить прямую n, перпендикулярную плоскости S|| b). Анализ решения задачи проведём на пространственном чертеже, рис. 4-2.

Взаимная перпендикулярность прямой и плоскости

Чтобы провести прямую n ^ S, нужно в этой плоскости взять две пересекающиеся прямые (на рис. 4-2 это р Ç m = К). Прямую n нужно строить перпендикулярно одновременно двум этим прямым.

Однако, если прямые р и m будут прямыми общего положения, то прямой угол к ним ни на одной плоскости проекций не спроецируется в натуральную величину. Согласно теореме опроецировании прямого угла (см. свойство 2 ортогонального проецирования, модуль №1) прямой угол спроецируется в натуральную величину на какую-нибудь плоскость проекций, если одна сторона прямого угла будет параллельной этой плоскости проекций. Поэтому, в качестве прямых р и m выгодно взять горизонталь h и фронталь f (рис. 4-3). Тогда прямой угол между n и h спроецируется в натуральную величину на П1, а прямой угол между n и f - на П2.

Тогда прямой угол между n и h спроецируется в натуральную величину на П1,

Рис. 4-3

Плоский чертёж: На рис. 4-4 плоскость S задана параллельными прямыми а и b. Точка К(К2) принадлежит этой плоскости. Нужно построить n ^ S, n Î К.

Плоский чертёж

Рис. 4-4

Согласно приведённым выше рассуждениям, в плоскости необходимо взять горизонталь и фронталь, затем, перпендикулярно каждой из них строить п. Построения начинаем с горизонтали (рис. 4-5).

Согласно приведённым выше рассуждениям, в плоскости необходимо взять горизонталь и фронталь

Рис. 4-5

Через точку К2 проводим h2 ^ линиям связи, находим h1, а на ней, с помощью линии связи, К1. Так как n ^ h, то n1 ^ h1, поэтому проводим n1 ^ h1 через точку K1.

Аналогично находим n2 (рис. 4-6). Через точку К1 проводим f1 ^ линиям связи, находим f2. Так как n ^ f, тo n2 ^ f2, поэтому проводим n2 ^ f2 через точку К2.

Полностью решение задачи представлено

Рис. 4-6

Полностью решение задачи представлено на рис. 4-7. Видимость прямой n не учитывалась.

Алгоритмическая запись решения

Рис. 4-7

Алгоритмическая запись решения:

1. h Ì S, f Ì S, h Ç f = K.

2. K Î n Þ K1 Î n1, K2 Î n2.

3. n ^ h Þ n1 ^ h1;

4. n ^ f Þ n2 ^ f2.

Итак, чтобы задать на комплексном чертеже прямую n, перпендикулярную данной плоскости S, достаточно построить n1 и n2, расположив их в любом месте чертежа, чтобы n1^h1, n2 ^ f2, где h и f - горизонталь и фронталь плоскости, при условии, что h Ç f.

Если плоскость S занимает проецирующее положение, то прямая, перпендикулярная ей, является линией уровня (рис. 4-8, 4-9).

Рис. 4-8

Если S - горизонтально проецирующая:

S ^^ П1 Þ h1 = S1, f ^^ П1

n ^ h Þ n1 ^ h1; n ^ f Þ n2 ^ f 2; Þ n - горизонталь

Рис. 4-9

Если S - фронтально проецирующая:

S ^^ П2 Þ f2 = S2, h ^^ П2.

n ^ h Þ n1 ^ h1; n ^ f Þ n2 ^ f2; Þ n -фронталь

Чтобы лучше понять данное утверждение, нужно вспомнить , какие прямые являются линиями уровня в проецирующих плоскостях. Для этого посмотрите рис. 2-12 и 2-14 в модуле № 2.

Лекции, примеры выполнения задания курсовых проектов по начерталке