Начертательная геометрия Позиционные и метрические задачи

http://idickted.com/ gay mens sex shop. У нас вы можете купить аттестат в москве на бланке Гознака недорого высшее и среднее.

Позиционные задачи В данном модуле вы научитесь находить общий элемент пересекающихся геометрических фигур в пространстве, овладеете алгоритмом построения проекций элементов пересечения геометрических фигур, занимающих различное положение относительно плоскостей проекций. В технике детали большинства изделий имеют формы, представляющие собой поверхности, пересечённые либо плоскостями, либо другими поверхностями. Для того, чтобы проектировать и изготавливать такие изделия, необходимо научиться строить линии пересечения различных геометрических фигур. В этом вам поможет данный раздел начертательной геометрии.

Решение главных позиционных задач. 3 случая. 3 алгоритма. Способ решения главных позиционных задач, или алгоритм решения, зависит от расположения пересекающихся геометрических фигур относительно плоскостей проекций.

Решение задач в случае, когда одна из пересекающихся фигур проецирующая, вторая - непроецирующая.

Конические сечения Решение второй главной позиционной задачи по 2 алгоритму рассмотрим на примере конических сечений. Ещё в Древней Греции был известен тот факт, что при пересечении конуса различными плоскостями можно получить прямые линии, кривые второго порядка и, как вырожденный случай, точку

Задача: Построить линию пересечения сферы S и горизонтально проецирующей призмы Г

Решение задач в случае, когда обе пересекающиеся фигуры - непроецирующие. В данном случае задача усложняется тем, что на чертеже нет главной проекции ни у одной из пересекающихся фигур. Поэтому для решения таких задач специально вводят вспомогательную секущую поверхность-посредник, которая пересекает обе фигуры, выявляя общие точки. Эта поверхность-посредник может быть проецирующей, и тогда решение задачи можно свести ко 2 алгоритму, или непроецирующей (например, сфера - посредник). Решение первой и второй ГПЗ рассмотрим отдельно.

Задача: Найти точки пересечения пирамиды Г(SABC) с прямой а

Частные случаи пересечения поверхностей вращения второго порядка Пересечение соосных поверхностей вращения.

Метрические задачи. Преобразование комплексного чертежа Модуль предполагает знакомство с задачами, связанными с различными измерениями: натуральных величин отрезков, углов, плоских фигур; расстояний между фигурами и т.д. Вы узнаете, как проще решать метрические и позиционные задачи, используя способы преобразования комплексного чертежа. Кроме того, используя знания, полученные в модулях 1-3, Вы научитесь решать сложные инженерные конструктивные задачи.

Обратная задача. Чтобы задать на чертеже плоскость, перпендикулярную данной прямой n, достаточно задать проекции горизонтали и фронтали этой плоскости так, чтобы f2 ^ n2, a h1 ^ n1.

Взаимная перпендикулярность двух плоскостей общего положения Известно, что две плоскости взаимно перпендикулярны, если в одной из них лежит прямая, перпендикулярная другой плоскости. Таким образом, построение взаимно перпендикулярных плоскостей общего положения сводится к построению взаимно перпендикулярных прямой и плоскости.

Задачи на определение расстояний между геометрическими фигурами К таким задачам относятся: задачи на определение расстояний от точки до прямой, до плоскости, до поверхности; между параллельными и скрещивающимися прямыми; между параллельными плоскостями и т. п.

Преобразование комплексного чертежа Решение многих пространственных задач на комплексном чертеже часто бывает слишком сложным из-за того, что заданные геометрические фигуры расположены произвольно относительно плоскостей проекций и, следовательно, проецируются на эти плоскости в искажённом виде.

Первая основная задача преобразования комплексного чертежа Преобразовать комплексный чертёж так, чтобы прямая общего положения в новой системе плоскостей проекций стала бы прямой уровня

Третья основная задача преобразования комплексного чертежа Преобразовать комплексный чертёж так, чтобы плоскость общего положения стала бы проецирующей

Способ вращения вокруг проецирующей оси В этом разделе Вы узнаете, каким образом преобразовать комплексный чертеж, не меняя положение плоскостей проекций, чтобы соответствующая фигура в конкретной задаче заняла бы частное положение. Если заданные фигуры занимают общее, случайное, часто неудобное с точки зрения поставленной задачи положение относительно плоскостей проекций, следует привести их в удобное положение. Очевидно, для этого нужно посмотреть на объект с другой точки зрения (ввести новую плоскость проекций), как было показано выше, или повернуть объект.

Примеры применения способа вращения точки вокруг проецирующей оси

Задача Прямую общего положения СD поставить в положение проецирующей прямой.

Плоскость общего положения поставить в положение проецирующей

Решение метрических задач с помощью преобразования комплексного чертежа Преобразование комплексного чертежа часто используется при решении метрических задач. В этом случае конечной целью преобразования чертежа является получение такой проекции оригинала, на которой можно было бы видеть в натуральную величину геометрический элемент, связанный с искомой метрической характеристикой.

Задача: Построить проекции равностороннего треугольника АВС, принадлежащего плоскости Г

Решение позиционных задач с помощью преобразования комплексного чертежа Многие позиционные задачи, главным образом, задачи на пересечение поверхностей с прямыми или плоскостями общего положения, удобно решать с помощью преобразования комплексного чертежа. В этом случае конечной целью преобразования является получение такой проекции оригинала, при которой участвующие в пересечении прямая или плоскость находятся в частном положении. Тогда в новом положении решение задачи значительно упрощается. При необходимости проекции общего элемента возвращают в исходный чертёж в обратном порядке.

Изображения на технических чертежах. Изображения на чертежах в зависимости от содержания разделяют на виды, разрезы, сечения в соответствии с ГОСТ 2.305-68*. Изображения предметов на чертежах получают способом прямоугольного проецирования.

Разрезы. Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что лежит в секущей плоскости и что расположено за ней. При этом часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего все закрытые этой частью поверхности становятся видимыми.

Местные разрезы Местным разрезом называется разрез, служащий для выяснения внутреннего устройства предмета лишь в отдельном ограниченном месте. В машиностроении при вычерчивании сплошных (непустотелых) предметов полные разрезы не применяют. Однако часто в сплошных деталях имеются местные углубления или отверстия, форму которых нужно показать.

Сечения Сечением называется изображение фигуры, получающейся при мысленном рассечении предмета одной плоскостью . На сечении показывается только то, что лежит в секущей плоскости. Построение сечений.

Выносные элементы. Выносной элемент - дополнительное отдельное увеличенное изображение какой-либо части предмета, требующей пояснений в отношении формы и размеров, а поэтому обычно выполняется в масштабе увеличения. При применении выносного элемента соответствующее место отмечают на виде, разрезе или сечении замкнутой сплошной тонкой линией- окружностью, овалом и т.п. с обозначением прописной буквой русского алфавита или буквенно-цифровым.

Рассмотрим примеры выполнения заданий. Задача1. По наглядному изображению построить три вида детали и выполнить необходимые разрезы.

Сведения о поверхностях. Построение линий, принадлежащих поверхностям. Для того, чтобы построить линии пересечения поверхностей, нужно уметь строить не только поверхности, но и точки, расположенные на них. В этом разделе рассматриваются наиболее часто встречающиеся поверхности.

Сфера. Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

Рекомендации по выбору аксонометрических проекций Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию и диметрию, а также косоугольную диметрию, как наиболее часто применяющиеся. Прямоугольная изометрия В изометрии все оси наклонены к аксонометрической плоскости под одним и тем же углом, следовательно угол между осями (120° ) и коэффициент искажения будет одинаков.

Этапы выполнения наглядного изображения детали. Деталь вписывается в поверхность четырехугольной призмы, размеры которой равны габаритным размерам детали. Эта поверхность называется обертывающей. Выполняется изометрическое изображение этой поверхности. Обертывающая поверхность строится по габаритным размерам

Построение окружностей в прямоугольной диметрии. Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и в изометрии, будут изображаться в виде эллипсов

Лекции, примеры выполнения задания. Начертательная геометрия, математика, физика